

Abstract—Residue Number Systems (RNSs) are efficient

alternatives to positional number systems, providing fast and

power-efficient computational systems. The key feature of RNS

benefitting modern embedded systems and Internet-of-thing (IoT)

edge devices is its energy efficiency. Modular addition is the most

important and frequent operation applied on the components of

RNS, including arithmetic units in the channels as well as forward

and reverse converters. The small and medium dynamic range

requirements of low-power embedded and edge devices make the

usage of the thermometer and one-hot coding viable, reducing the

power consumption and improving the energy efficiency of

modulo addition in comparison to regular binary representations.

Based on these techniques, this paper presents two new energy-

efficient modular adders, which due to the carry-free internal

computations, are also highly performant. The proposed modular

adders, based on the thermometer and one-hot coding result in

average improvements of 38% and 34.5% for the delay, 27% and

14.5% for the circuit area, 29.5% and 6.3% for energy

consumption, and about 54.9% and 44.2% for the area-delay

product (ADP), respectively, in comparison with the related state

of the art.

Index Terms—Residue Number System, Computer Arithmetic,

Modular addition, Thermometer Coding, One-hot Coding

I. INTRODUCTION

odern digital signal processing systems [1] require

improved energy-efficiency, namely for emerging

applications such as deep learning [2] and Internet-of-Things

(IoT) [3]. Unconventional number systems and arithmetic have

been investigated recently to achieve specialized efficient

embedded systems for those applications [1]. Residue Number

Systems (RNSs) [4], in particular, have been used for digital

signal processing (DSP) [5] and cryptography [6], supporting

high-speed, low-power and fault-tolerant computations.

Mapping weighted number representations into residues and

vice versa, i.e. forward and reverse conversion, are essential but

complex inter-modulo operations. However, RNS arithmetic

operations, such as additions and multiplications, are performed

much more frequently than forward and reverse conversions

This work was partially supported by Portuguese funds through Fundação

para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019.
F. Jafarzadehpour is with Department of Computer Engineering, Kerman

Branch, Islamic Azad University, Kerman, Iran (e-mail:

f.jafarzadeh@iauk.ac.ir).
A.S. Molahosseini is with Department of Computer Engineering, Kerman

Branch, Islamic Azad University, Kerman, Iran (e-mail: amir@iauk.ac.ir).

[1]. Therefore, efficient modular adders are essential to achieve

RNS-based high-performance and highly efficient embedded

computing systems.

One way to increase the efficiency of modular arithmetic

units, i.e. modulo adders, subtractors and multipliers, is by

using the one-hot coding (OHC) [7-9]. The one-hot residue

(OHR) has been considered for designing RNS modular

arithmetic circuits based on circular shifting [10]. The OHC

circuits based on barrel shifters show a power-delay product

(PDP) reduction of up to 85% in comparison to the

conventional positional encoding, because they significantly

reduce the circuit’s activity factor [10]. RNSs based on OHC

have also been used on DSP applications due to their high speed

[9, 11]. Alternatively, there are other types of coding, such as

the thermometer coding (TC) [12] that can be applied to

enhance the performance of RNS modular arithmetic. The

thermometer is a unary coding, in which the number of 1’s

corresponds to the magnitude of the displayed number. This

means that the Hamming distance between numbers

represented in TC has a linear relationship to its difference [12].

This type of coding is a sub-class of Golomb coding’s [13], used

in a variety of applications, including neural networks and data

compression [13, 14]. Moreover, the TC together with

distributed arithmetic can lead to fast implementations of

modular arithmetic circuits [15, 16].

With existent analog to digital converters (ADC) that directly

convert analog inputs to residues encoded in the TC format

[17], engineers and researchers are increasingly interested in

modular adders for TC [18]. Since there is no carry propagation

in the modular addition of two TC numbers, the addition for

small moduli can be done faster when compared to designs for

positional representations (with the exception of moduli like

2𝑛). Moreover, the usage of the TC format to represent residues

removes the need for forward converters, whenever inputs

values are coded using analog-to-residue converters [17].

Similarly, modular adders based on OHC operate in a carry free

manner [19], having a simple structure for different moduli. To

set up efficient RNS systems with both thermometer or one hot

coding, small moduli should be selected. This makes this

A.A.E. Zarandi is with Department of Computer Engineering, Shahid

Bahonar University of Kerman, Kerman, Iran (e-mail: a.emrani@uk.ac.ir).
L. Sousa is with INESC-ID, Instituto Superior Técnico (IST), University of

Lisbon, Lisbon, Portugal (e-mail: Leonel.sousa@ist.ul.pt).

Efficient Modular Adder Designs Based on

Thermometer and One-Hot Coding

Fereshteh Jafarzadehpour, Amir Sabbagh Molahosseini, Senior Member, IEEE, Azadeh Alsadat

Emrani Zarandi, Member, IEEE, and Leonel Sousa, Senior Member, IEEE

M

approach more suitable to a class of applications that includes

low-power embedded and IoT edge devices, where a small

dynamic range is required [1]. For applications requiring larger

dynamic ranges, sets with a higher number of moduli should be

selected, while also possibly including a modulo 2n channel

exploiting binary representations.

This paper presents new efficient structures for designing

modular adders based on One-hot and Thermometer codings.

The proposed adders are designed using novel digital circuits

supported on specific features of OHC and TC. In comparison

to previous works [18, 19], which proposed adders based on

shifting and were implemented using a large number of

multiplexers (MUXs), the herein proposed adders have

significant practical experimental improvements regarding the

latency, area and energy consumption.

The remaining of this paper is organized as follows. Firstly,

the RNS and its associated modular arithmetic are introduced,

and then the TC and OHC together with the corresponding

state-of-the-art modular adder architectures are briefly

reviewed in Section II. Then, the new structures for modular

addition based on OHC and TC are proposed in Section III, and

implemented and compared with previous works in Section IV.

Finally, conclusions are drawn in Section V.

II. BACKGROUND

In this section, the background on RNS, OHC and TC is

introduced.

A. Residue Number Systems

An RNS supported on a moduli-set of n pair-wise relatively

prime numbers {m1, m2, …, mn} allows for the integers in [0,

M-1] , with M=m1×m2×…×mn, to be uniquely represented by

their remainders modulo m1, m2, …, mn.

A forward conversion maps the binary weighted

representation of a number X onto the residues (x1, x2, …, xn)

associated with the moduli in the set:

𝑥𝑖 = |𝑋|𝑚𝑖 = |𝑋𝑀𝐵−1…𝑋1𝑋0|𝑚𝑖 𝑖 = 1…𝑛 (1)

where 𝑀𝐵 = ⌈log2𝑚𝑖⌉ [4].

Considering two RNS numbers A and B:

𝐴 = (𝑎1,𝑎2, … , 𝑎𝑛) (2)

𝐵 = (𝑏1,𝑏2, … , 𝑏𝑛) (3)

The modular addition of these two RNS numbers can be

performed as follows [20]:

𝑆 = 𝐴 + 𝐵 = (𝑠1,𝑠2, … , 𝑠𝑛) (4)

with

𝑠𝑖 = |𝑎𝑖 + 𝑏𝑖|𝑚𝑖 = {
𝑎𝑖 + 𝑏𝑖 𝑖𝑓 𝑎𝑖 + 𝑏𝑖 < 𝑚𝑖

𝑎𝑖 + 𝑏𝑖 −𝑚𝑖 𝑖𝑓 𝑎𝑖 + 𝑏𝑖 ≥ 𝑚𝑖
 (5)

The reverse conversion maps the residues in the RNS

domain (x1, x2, …, xn) into their equivalent weighted binary

representations, using a method like the mixed-radix

conversion (MRC) [4]:

𝑋 = 𝑣𝑛∏ 𝑚𝑖 +⋯+ 𝑣3𝑚2𝑚1 + 𝑣2𝑚1 + 𝑣1
𝑛−1
𝑖=1 , (6)

the first coefficient v1 is equal to x1, and for the other

coefficients we have that:

𝑣𝑛 = |(((𝑥𝑛 − 𝑣1)|𝑚1
−1|𝑚𝑛 − 𝑣2) |𝑚2

−1|𝑚𝑛 −⋯−

𝑣𝑛−1)|𝑚𝑛−1
−1 |𝑚𝑛|𝑚𝑛

 (7)

where |𝑚𝑖
−1|

𝑚𝑗
 denotes the multiplicative inverse of mi modulo

mj.

B. The Thermometer Coding

With TC [18], the value of each number is expressed as the

number of ones in a string of bits. Since in this coding no weight

is assigned to bit positions, it is not important where the ones

are placed. However, for simplicity, these 1s are usually placed

at one end of the string [18]. As an example, the numbers

between 0 and 7 are represented as shown in Table I.

Table I shows that by increasing the range of numbers, the

amount of required bits in a TC representation grows at a fast

pace. Therefore, the TC is not suitable to represent large

numbers. Nevertheless, the decomposition of numbers in a set

of small residues makes TC-based fast circuits suitable for

RNS. Therefore, combining TC with RNS improves the

performance and efficiency of arithmetic systems. The

application of the thermometer code to RNS residues is herein

designated Thermometer Coding for RNS (TCR).

In [18], it is stated that the number bits required to represent

all the remainders modulo mi is mi. However, it should be

mentioned that, since the left-most bit is always zero, these

numbers can in fact be represented with only mi-1 bits.

In order to perform an addition in TC, one needs to count the

number of ones in the two operands. If this number is greater

than or equal to mi, the sum should be decreased by mi. As an

example, to add the two numbers A= 001111 and B=011111

modulo 7 in TC, since a total of 9 bits take the value of one

when considering all the bits of the two representations, one

removes 7 of them to obtain the result of 000011.

In order to perform a subtraction in TC, the complement of

the subtrahend (B) has to be computed and added to the

minuend (A). When B is not zero, the complement of B can be

easily calculated as follows:

𝐵̅=𝑏̅2𝑏̅3𝑏̅4… 𝑏̅m−1 1 if (𝐵 ≠ 00…0) (8)

Herein, as in [18], the starting index of the bits is considered to

be 1, i.e. b1. In other words, the rightmost bit, b1, lets one know

whether a number is greater than or equal to 0. For instance, if

B is equal to 000011 modulo 7, its complement, 𝐵̅ , takes the

value of 011111. Moreover, the complement of B=000000 is

also 𝐵 = 000000, which can be easily identified by checking

TABLE I

THERMOMETER CODING EXAMPLE

Regular Representation TC

0 0000000

1 0000001

2 0000011

3 0000111

4 0001111

5 0011111

6 0111111

7 1111111

https://en.wikipedia.org/wiki/Subtrahend
https://en.wikipedia.org/wiki/Minuend

the value of the first bit (b1=0). In general, the complement of

B can be calculated as:

𝐵 ̅= (𝑏̅2⋀𝑏1)(𝑏̅3⋀𝑏1) … (𝑏̅𝑚−1⋀𝑏1)𝑏1 (9)

In [18], the number of bits required for the TC

representations is considered to be the value of the modulo. In

this situation, 𝐵̅ can be computed as follows:

𝐵̅= 𝑏̅1𝑏̅2𝑏̅3… 𝑏̅m−1𝑏̅𝑚 (10)

By considering the representation in (10), the complement of

zero takes the value of the modulo, which does not cause any

problem for the modular addition. However, the modular adder

suggested in this paper only uses m-1 bits, thus 𝑏𝑚 is not used.

Fig. 1. Modulo-7 TCR-based adder [18]

By using the distributed arithmetic approach [21], modular

multiplication based on the TC can be done using modular

adders. Therefore, an efficient structure for designing TC-based

modular adders plays an important role to enhance the

performance of RNS based on TC. Fig. 1 presents the TC-based

modulo 7 adder architecture proposed in [18]. In this adder, one

of the operands is converted from the TC to the binary format

using a customized decoder, shown as s[1], s[2] and s[4] in Fig.

1 (where the indexes indicate the weight of the bit in the binary

number system, e.g. s[1]+2s[2]+4s[4]). A number of ones equal

to the value of the first operand is added to the second operand

(b[6]…b[1]). If the number of 1s in the result exceed m-1, the

m initial 1s are removed from the final result (r in the Fig. 1).

For example, let us assume that B is equal to 6, represented

in the TCR format 111111, and that S is equal to 5, represented

in the binary format s[1]=1, s[2]=0, s[4]=1. According to Fig.

1, the s[1] forces the multiplexers in the first level to shift one

bit left b, and insert a 1 in the rightmost bit. Next, the

multiplexers in the second level transfer their inputs to the

outputs without inserting 1s since s[2]=0 (if s[2] was 1, then

two 1s would be added to the right bits). Similarly, the

multiplexers in the third level perform 4-bit left shifting while

inserting four 1s into the right bit positions. The result of this

step is 011111111111 (c signals in Fig. 1). Since in this example

the modulo is 7, c[7] plays a key role in modulo reduction and

is used to select the inputs of the multiplexers in the last level.

If c[7] is equal to 1, the result exceeded m-1 and thus the value

of the modulo should be subtracted from the result, i.e. the c[8]

to c[12] are forwarded to the output. Otherwise, c[7]=0 and c[1]

to c[6] will constitute the output (the result is less than the

modulo value 7).

C. The One-Hot Coding

The OHC is usually used to address look up tables (LUTs),

and at the output of some linear circuits like FIR filters [17].

K+1 bits are required to represent numbers between 0 and K in

this coding. With OHC only one bit takes the value of one and

the others are zero. The value of the number in this coding is

defined by the relative position of the bit with value ‘1’. Table

II shows the numbers between 0 and 7 encoded in an OHC.

The OHC requires one more bit than the TC. When the OHC

is used to represent residues in RNS, it is named OHR [21]. The

modular addition of two numbers A and B in this type of coding

can be computed with shifts. To perform an addition, one

operand should be circularly shifted a number of positions

defined by the other operand. To perform (A-B) mod m, the

complement of B should be added to A. The complement of B

modulo m corresponds to:

𝐵̅=𝑏1𝑏2𝑏3…𝑏m−1𝑏0 (11)

where bits are indexed from 0 to m-1. As an example, the

complement of 2 (0000100) modulo 7 is 5 (0100000), and the

complement of 0 is zero. It is easily observed that 𝐵̅ is

calculated without inverters, by reordering the bits.

TABLE II

ONE-HOT CODING EXAMPLE

Regular Representation HOC

0 00000001

1 00000010

2 00000100

3 00001000

4 00010000

5 00100000

6 01000000

7 10000000

Fig. 2 presents a OHR modulo 7 adder [19]. The second

operand, i.e. B, is in binary format, represented by b[2]b[1]b[0]

in Fig. 2. These bits operate as selectors for the multiplexers at

the different levels. Modular addition for OHC is performed by

just circularly left shifting one of the operands a number of

positions given by the value of the other. In Fig. 2, the operand

A is circularly left shifted according the value of B. Since B is

in the binary format, if b0=1 then A will be one-bit circularly

shifted to the left. Similarly, if b1 and b2 equal to 1, then a will

be shifted left two and four positions, corresponding to the

weights of the bits, respectively.

Fig. 2. The OHR based modulo-7 adder [19]

III. THE PROPOSED MODULAR ADDERS

In this section, new designs for OHR and TCR based modular

adders are proposed. The proposed hardware structures for

modular addition require less circuit area and less delay in

comparison to the state of the art.

A. The Thermometer-Based Modular Adder

An important aspect to apply the proposed method to add two

modulo m residues, (0 ≤ A,B < m) represented in TCR is to

identify whether A+B>=m or not. With this aim, and also for

computing the sum, the order of the bits of B is reversed, which

means the rightmost bit becomes the most left bit, etc. After

that, a bitwise AND and NOR logic operations are applied to the

inputs A and B. If any bit of the output of AND gates is 1, then

A+B is equal to or greater than the modulo. More concretely, if

exactly one bit of these outputs becomes 1, this means that

A+B=m and the result should be 0. When two bits of the outputs

are 1, the result becomes 1, and this process is continued

whenever more bits of the output take the value 1. The outputs

of the NOR gates are used to compute the result of the addition

when A+B<m, as it will be observed in Lemma 1.

Lemma 1: Consider two TCR numbers, A and B of m-1 bits.

The condition 𝐴 + 𝐵 ≥ 𝑚 is verified with the bit cl, and the

result of A+B mod m represented with m-1 bits is computed with

the following relations:

𝑆𝑢𝑚 = {
𝑆𝑈𝑀1 𝑖𝑓 𝑐𝑙 = 1 (𝐴 + 𝐵 ≥ 𝑚)
𝑆𝑈𝑀0 𝑖𝑓 𝑐𝑙 = 0 (𝐴 + 𝐵 < 𝑚)

 (12)

where

𝑐𝑙 =∨𝑖=1
𝑚−1 (𝑎𝑖 ∧ 𝑏𝑚−𝑖) (13)

𝑆𝑈𝑀1 = (∑ 𝑎𝑖 ∧ 𝑏𝑚−𝑖) − 1
𝑚−1
𝑖=1 (14)

𝑆𝑈𝑀0 = (𝑚 − 1) − (∑ 𝑎𝑖 ∨ 𝑏𝑚−𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝑚−1
𝑖=1 (15)

Proof: Both A and B are TCR numbers in arithmetic modulo

m, which means that m-1 bits are required to represent each:

𝐴 = 𝑎𝑚−1…𝑎2𝑎1 = 0…0⏟
𝑎𝑧𝑒𝑟𝑜𝑠

1…1⏟
𝑎𝑜𝑛𝑒𝑠

 (16)

𝐵 = 𝑏𝑚−1…𝑏2𝑏1 = 0…0⏟
𝑏𝑧𝑒𝑟𝑜𝑠

1…1⏟
𝑏𝑜𝑛𝑒𝑠

 (17)

In (16) and (17), the total number of bits, i.e. 𝑎𝑧𝑒𝑟𝑜𝑠+𝑎𝑜𝑛𝑒𝑠 or

𝑏𝑧𝑒𝑟𝑜𝑠+𝑏𝑜𝑛𝑒𝑠, is equal to m-1. Hence, if the total number of 1’s

in both A and B is greater than or equal to the modulo, m, there

will not be enough space in the result to store them all. In other

words, the second operand can only accept as many bits with

the value of 1 from the first operand as its number of zero bits.

Otherwise, the sum will be equal to or greater than the modulo.

In order to detect this situation, the order of the bits of the

second operand can be reversed, and then a bitwise AND

operation is performed, i.e. 𝑎𝑖 ∧ 𝑏𝑚−𝑖:

𝐴 = 0…0⏟
𝑎_𝑧𝑒𝑟𝑜𝑠

1…1⏟
𝑘

1…1⏟
𝑎𝑜𝑛𝑒𝑠−𝑘

 (18)

𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 1…1⏟
𝑏𝑜𝑛𝑒𝑠−𝑘

1…1⏟
𝑘

0…0⏟
𝑏_𝑧𝑒𝑟𝑜𝑠

 (19)

𝐴 ∧ 𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 0…0⏟
𝑎_𝑧𝑒𝑟𝑜𝑠

1…1⏟
𝑘

0…0⏟
𝑏_𝑧𝑒𝑟𝑜𝑠

 (20)

The overlap between the 1 bits of A and the reversed version

of B means that the addition of A and B exceeds or is equal to

m in the following situations:

{

𝐴 + 𝐵 < 𝑚 𝑖𝑓 𝑘 = 0
𝐴 + 𝐵 = 𝑚 𝑖𝑓 𝑘 = 1

𝐴 + 𝐵 > 𝑚 𝑖𝑓 𝑘 > 1
 (21)

Therefore, one just needs to apply the OR operation to all the

outputs of the bitwise AND operation to check whether at least

one of these outputs is 1 (meaning that the sum is equal to or

greater than m) or all of them are 0 (meaning that the sum will

be less than the modulo). Hence, (20) can be rewritten as:

𝐴 ∧ 𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = (𝑎𝑚−1 ∧ 𝑏1)… (𝑎2 ∧ 𝑏𝑚−2)(𝑎1 ∧ 𝑏𝑚−1). (22)

To detect the existence of at least a bit 1 among the resulting

bits in (22), the following formulation can be adopted:

𝑐𝑙 = (𝑎𝑚−1 ∧ 𝑏1) ∨ …∨ (𝑎2 ∧ 𝑏𝑚−2) ∨ (𝑎1 ∧ 𝑏𝑚−1) (23)

Hence, (13) is achieved, i.e. cl=1 and cl=0 mean that 𝐴 + 𝐵 ≥
𝑚 and 𝐴 + 𝐵 < 𝑚, respectively.

 (20) can also be used to obtain the result of the modular

addition whenever 𝐴 + 𝐵 ≥ 𝑚. k determines the number of 1s

that are in excess of the m-1 bits. Since the sum of the regular

addition of A and B has to be reduced by m, this can be achieved

by considering the overlapping 1 bits minus one as the result:

𝑆𝑈𝑀1 = 0…0⏟
𝑏_𝑧𝑒𝑟𝑜𝑠

0…0⏟
𝑎_𝑧𝑒𝑟𝑜𝑠

1…1⏟
𝑘−1

 (24)

When k=1, A+B is equal to the modulo m. The number of bits

with the value 1 in (22) is equal to the number of 1s of the

modular addition plus one. There is no situation where two non-

sequential bits in (22) become one whereas between them there

are bits with the zero value. Therefore, the correct modular

addition for k=1 is 0. For the other cases, wherein k>1, just k-1

1s should be placed in the final TCR sum. Hence, the number

of overlapping 1 bits in (22) should be counted using the

formula ∑ 𝑎𝑖 ∧ 𝑏𝑚−𝑖
𝑚−1
𝑖=1 , and then decreased by one to achieve

the final sum, corresponding to 𝑆𝑈𝑀1 in (14).

For the case 𝐴 + 𝐵 < 𝑚, the number of bits with the zero

value is the key for performing the modular addition. As in the

previous condition, the bit-reversed representation of B is

considered and, on the top of that, the bitwise OR operation with

A is applied:

𝐴 = 0…0⏟
𝑎𝑧𝑒𝑟𝑜𝑠−𝑘

0…0⏟
𝑘

1…1⏟
𝑎𝑜𝑛𝑒𝑠

 (25)

𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 1…1⏟
𝑏𝑜𝑛𝑒𝑠

0…0⏟
𝑘

0…0⏟
𝑏𝑧𝑒𝑟𝑜𝑠−𝑘

 (26)

𝐴 ∨ 𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 1…1⏟
𝑏𝑜𝑛𝑒𝑠

0…0⏟
𝑘

1…1⏟
𝑎𝑜𝑛𝑒𝑠

 (27)

The sum in the case 𝐴 + 𝐵 < 𝑚 will have (𝑎𝑜𝑛𝑒𝑠+𝑏𝑜𝑛𝑒𝑠) 1 bits

together with k bits of 0, i.e.:

𝑆𝑈𝑀0 = 0…0⏟
𝑘

1…1⏟
𝑏𝑜𝑛𝑒𝑠

1…1⏟
𝑎𝑜𝑛𝑒𝑠

 (28)

Alternatively, the number of zero bits in 𝑆𝑈𝑀0 can be

achieved by counting the number of overlapping zero bits

between A and the reversed version of B using the bitwise NOR

operation (∑ 𝑎𝑖 ∨ 𝑏𝑚−𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑚−1
𝑖=1), which can be represented as:

𝐴 ∨ 𝐵𝑟𝑒𝑣𝑒𝑟𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0…0⏟
𝑏𝑜𝑛𝑒𝑠

1…1⏟
𝑘

0…0⏟
𝑎𝑜𝑛𝑒𝑠

 (29)

Then, the subtraction (𝑚 − 1) − (∑ 𝑎 ∨ 𝑏𝑚−𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑚−1
𝑖=1 is

computed to achieve the number of 1s in the final sum, leading

to (15).

Example 1: Let us assume that A=3, B=5 and compute |3+5|7

. Both numbers are represented in TCR in Fig. 3. It can be seen

that (𝑎2 ∧ 𝑏5) and (𝑎3 ∧ 𝑏4) are equal to one, which means that

cl=1 and A+B≥m. To achieve the sum, according to (14):

𝑆𝑈𝑀1 = (∑ 𝑎𝑖 ∧ 𝑏𝑚−𝑖) − 1
6

𝑖=1
= 2 − 1 = 1

According to (24), the TCR representation of the result is:

𝑆𝑈𝑀1 = 000001

which is the correct result (|3 + 5|7 = 1).

Fig. 3. The thermometer addition example when A+B ≥ m

Example 2: Let us assume that A=1 and B=2. Both numbers

are represented in TCR in Fig. 4. It can be seen that none of the

outputs of the AND gates takes the value ’1’. This means cl=0,

and leads to the conclusion that A+B<m. According to (15), the

sum is:

𝑆𝑈𝑀0 = (7 − 1) − (∑ 𝑎𝑖 ∨ 𝑏𝑚−𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) = 6 − 3 = 3
6

𝑖=1

According to (28), the TCR representation of the result is:

𝑆𝑈𝑀0 = 000111

which is the correct result (|1 + 2|7 = 3).

Fig. 4. The thermometer addition example when A+B < m

The proposed design for the TCR based modulo adder is

illustrated in Fig. 5, for the case when m=7. When A+B>=m, the

result is stored in 𝑆𝑈𝑀1, while for the other case, A+B<m, the

result is placed in 𝑆𝑈𝑀0. As mentioned before, if at least one of

the ANDs’ output bits in the first level gets the value 1, the result

of the modular addition of A and B is equal to or greater than m.

Otherwise, the result is less than m. L0 signals are connected to

the NOR gate with 6 inputs. Based on the output of this gate

(sel), 𝑆𝑈𝑀0 or 𝑆𝑈𝑀1 is selected (sel is the complement of cl).

It should be noted that some multi-input gates in Fig. 5 can be

implemented using tree structures of 2-input gates without

impacting the delay. Let us analyze the operation of the circuit

to compute 𝑆𝑈𝑀0 and 𝑆𝑈𝑀1.

 𝑆𝑈𝑀0 circuit

As observed in Fig. 5, B, with the bits in the reverse order, and

A are the inputs of the NOR and AND gates in the first level.

When A+B<m, the output of all the AND gates in the first level

becomes 0, and the number of output bits of the NOR gates with

value ‘1’ is used to identify the number of zeros in 𝑆𝑈𝑀0.

Therefore, if at least one of the Z0 signals becomes one, the

number of zeros in the result is also at least one. Since with TC

0s are placed in the bits located on the left side, the value of the

left bit of the 𝑆𝑈𝑀0 is equal to the T0 signal.

If at least the output of two NOR gates of the first level

becomes one, the number of bits with 0 in the result will be at

least two. As it was mentioned before, if the output of more than

one NOR gate becomes one, these one-bits are located

sequentially. Therefore, the AND gates can detect whenever

there are two sequential bits with the value 1. The output of the

NOR gate with 5 inputs (T1) specifies the 5th bit of the 𝑆𝑈𝑀0.

In the same way, if at least 3 signals of Z0 become one, this

means that there are at least 3 bits of the result with the value 0,

etc. Finally, if T5, the output of the NAND gate, becomes ‘0’,

which means that the outputs of all the NOR gates in the first

level are ’1’, all the 6 bits of the sum are ’0’.

𝑆𝑈𝑀1 circuit

Whenever A+B>=m, the result of the modular addition of A

and B is 𝑆𝑈𝑀1. The output of all the NOR gates in the first level

becomes 0, and the outputs of the AND gates in the first level

are used to calculate 𝑆𝑈𝑀1. If exactly one of the outputs of the

AND gates becomes one, the result of A+B is equal to the

modulo m and the sum takes the value of zero. As it was

mentioned before, if A+B>=m, the difference between the

number of bits of the result with the value 1 and the number of

AND gates with output 1 is one. Hence, if at least two L0 signals

have the value 1 there is at least one bit of the result with the

value ’1’. In this situation, the output of the NOR gate with 5

inputs (T1) takes the value zero. Since in TC, ones are placed

sequentially at the right-hand side, the value of the right most

bit of 𝑆𝑈𝑀1 is the complemented value of T1. Similarly, having

at least three signals of L0 with the value ‘1’ results in the least

two bits taking the value ’1’, etc.

Whenever the result of A+B becomes equal to or greater than

m, the result has at least one bit with the value zero, placed on

the left side. In order to add two modulo m integers A and B,

the addition result is in the range 0 to 2m-2. When A+B≥m the

result of the addition takes the maximum value of m-2 and

there is at least one zero bit. It should be noted that the six L0

signals are used to compute the MUX’ selector. If at least one

of these signals takes the value of one, the output of the 6-

input NOR gate, which generates the sel signal, becomes 0,

selecting 𝑆𝑈𝑀1 as the final result. Otherwise, when all six

signals are zero, 𝑆𝑈𝑀0 will be outputted. The structure of the

Fig. 5. The proposed TCR based modulo-7 adder

proposed TCR adder in Fig. 5 can be easily generalized for a

general value of m.

B. The One-Hot-Based Modular Adder

Herein, we use the bit indexing of [19], wherein the starting

index of bits is considered to be 0. Because only one bit of the

OHR operands has the value ’1’ (the bit position defines the

value of the integer), there are m2 possible combinations of A

and B.

Lemma 2: In the One-Hot modular addition, exactly m

combinations of all the possible m2 combinations of A and B

result in the same output. Therefore, each bit of the result is set

to 1 for m combinations of A and B.

Proof:

If A has the value of k (𝑎𝑘=1), for each i there is exactly one

value of B for which the result of A + B mod m is i. We start by

considering the two following states:

1) k ≤ i: In this case, B can be calculated from the

formula: A+B=i. Therefore, B has the value of i-k

(𝑏𝑖−𝑘 = 1).

2) k > i: In this case B can be calculated as: A+B=i+m and

thus the only possible choice of B is m+i-k (𝑏𝑖+𝑚−𝑘 =

1).

where k is an integer ranging from 0 to m-1.

For each value of k, there is exactly one choice of B resulting

in SUMi = 1. Therefore, m combinations of A and B produce

the value of i in the modular addition output.

The following relation shows the m combinations for which

the modular addition of A and B is equal to i (SUMi has the

value of one).

𝑆𝑈𝑀𝑖 = (⋁ (𝑎𝑘 ∧ 𝑏𝑖−𝑘))
𝑖
𝑘=0 ∨ (⋁ (𝑎𝑘′ ∧ 𝑏𝑖+𝑚−𝑘′))

𝑚−1

𝑘′=𝑖+1
 (30)

The first term of (30) includes i+1 combinations of A and B,

while the second takes into account m-i-1 combinations, leading

to a total of (i+1) +(m-i-1) =m combinations.

When A=B, the bitwise AND of A and B easily identifies the

position of the one-value bits both in A and B. In this case, the

output of only one AND gate becomes 1 while all the other bits

are 0. Therefore, we can use m AND gates for the m

combinations of A=B.

When A≠B, the bitwise OR of A and B indicates two positions

of bits with the value of one (a bit position in A and another in

B). It is not important which of these two positions belongs to

B or A since addition is commutative. If these two bit positions

are i and j (we can detect this case by ANDing the outputs of

the OR gates in bit position i and j), two combinations of A and

B are possible: 1) 𝐴𝑖 = 1 𝑎𝑛𝑑 𝐵𝑗 = 0; and 2) 𝐴𝑖 = 0 𝑎𝑛𝑑 𝐵𝑗 =

1. Therefore, for detecting the m2–m combinations of A≠B, m

2-input OR gates are used in the first level and (𝑚
2
)=

𝑚!

(𝑚−2)!2!
=

𝑚(𝑚−1)

2
 2-input AND gates are required in the second level (for

ANDing all the combinations of two outputs of the OR gates in

the first level). As already mentioned, each AND gate in the

second level covers two combinations of A and B, and so all the

(𝑚
2
) ∗ 2 possible combinations are covered.

Fig. 6 shows the proposed OHR adder for a general value of m.

The numbers inside the OR gates indicate the number of inputs

(these OR gates can also be implemented using two-input OR

gates). Note that AND(i) and OR(i) represent the bits resulting

from the ANDing and ORing of the inputs Ai and Bi,

respectively. It can be seen that m AND gates at the first level

are used to detect the m combinations of A and B for A=B. In

other words, if both A and B have the same value, they have the

same bit position with ‘1’, and the other bit positions are zero

according to the definition of OHC. For identifying the other

cases, A≠B (the remaining m2–m combinations of A and B),

firstly the OR of A and B in the first level are computed, and

then all the combinations of two OR gate outputs are ANDed.

The output of each AND gate in the second level allows to

identify two combinations of A ≠ B.

With this approach, all the m2 combinations of modular

additions of A and B in one-hot coding can be detected with

m(m+1)/2 AND gates (m AND gates in the first level for A=B

and m(m-1)/2 AND gates in the second level for A≠B).

The following two cases are individually considered in Fig. 6:

1) odd m

Each bit of the SUM in this case, when m is odd and A=B,

can be calculated from (31), where i is the bit number.

𝑆𝑈𝑀𝑖 = {
𝐴𝑁𝐷 (

𝑖

2
) 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑, 𝐴 = 𝐵 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐴𝑁𝐷 (
𝑚+𝑖

2
) 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑, 𝐴 = 𝐵 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑

 (31)

In general, when m is odd, The SUM can be calculated with

(32) and (33) ((32) is used for the bits with even index and (33)

is used for the bits with odd index).

𝑆𝑈𝑀𝑖 = 𝐴𝑁𝐷 (
𝑖

2
) ∨ (⋁

𝑖

2
−1

𝑘=0⏟
𝑖

2
−1≥0

(𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 − 𝑘))) ∨

(⋁
⌊
𝑚+𝑖

2
⌋

𝑘′=𝑖+1⏟
𝑖≤𝑚−2

(𝑂𝑅(𝑘′) ∧ 𝑂𝑅(𝑚 + 𝑖 − 𝑘′)))

(m is odd and i is even) (32)

𝑆𝑈𝑀𝑖 = 𝐴𝑁𝐷 (
𝑚+𝑖

2
) ∨ (⋁

⌊
𝑖

2
⌋

𝑘=0
(𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 − 𝑘))) ∨

(⋁
(
𝑚+𝑖

2
)−1

𝑘′=𝑖+1⏟
𝑖≤𝑚−2

(𝑂𝑅(𝑘′) ∧ 𝑂𝑅(𝑚 + 𝑖 − 𝑘′)))

(m is odd and i is odd) (33)

According to Lemma 2, only m combinations from all the

possible m2 combinations of A and B result in the same output.

(32) and (33) confirm this point. Table III shows all

combinations that cause 𝑆𝑈𝑀𝑖 = 1 in (32). The total number of

combinations that are covered by (32) (𝑛(32)) is shown in (34).

𝑛(32)=1+i+(⌊
𝑚+𝑖

2
⌋ -i)*2= 1+𝑖 + (⌊

𝑚

2
⌋ +

i

2
− i) ∗ 2 =1+(

𝑚−1

2
) ∗

2 = 𝑚 (m is odd and i is even) (34)

Table IV shows all combinations that lead to 𝑆𝑈𝑀𝑖 = 1 in

(33). The total number of combinations covered by (33) (𝑛(33))

is shown in (35).

𝑛(33)= 1+(⌊
i

2
⌋ + 1) *2 +((

m+i

2
) − 1 -i)*2 = 1+((

i−1

2
) + 1) ∗ 2

+(m-i-2)=m (m is odd and i is odd) (35)

2) even m

In this case, each of the m combinations of A=B produces even

values of SUM. (36) shows the value of each bit in the result

when m is even and A=B.

𝑆𝑈𝑀𝑖 =

{
(𝐴𝑁𝐷 (

𝑖

2
) ∨ 𝐴𝑁𝐷 (

𝑚+𝑖

2
)) 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝐴 = 𝐵 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

 0 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝐴 = 𝐵 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑

(36)

In general, when m is even, the SUM can be calculated from

(37) and (38) ((37) is used for the bits with even index and (38)

for the bits with odd index).

𝑆𝑈𝑀𝑖 = 𝐴𝑁𝐷 (
𝑖

2
) ∨ 𝐴𝑁𝐷 (

𝑖+𝑚

2
) ∨ (⋁

𝑖

2
−1

𝑘=0⏟
𝑖

2
−1≥0

(𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 −

𝑘))) ∨ (⋁
(
𝑚+𝑖

2
)−1

𝑘′=𝑖+1⏟
𝑖≤𝑚−2

(𝑂𝑅(𝑘′) ∧ 𝑂𝑅(𝑚 + 𝑖 − 𝑘′)))

(m is even and i is even) (37)

𝑆𝑈𝑀𝑖 = (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 − 𝑘)))
⌊
𝑖

2
⌋

𝑘=0
∨ (⋁ (𝑂𝑅(𝑘′) ∧

⌊
𝑚+𝑖

2
⌋

𝑘′=𝑖+1

𝑂𝑅(𝑚 + 𝑖 − 𝑘′)))

(m is even and i is odd) (38)

Equations (37) and (38) also cover m combinations of A and

B.

Example:

(32) and (33) are used to implement an OHR-based adder

modulo m=7.The bits of even index of SUM are produced by

(32):

𝑆𝑈𝑀0=AND (0)∨ (⋁ (𝑂𝑅(𝑘′) ∧ 𝑂𝑅(7 + 0 − 𝑘′)))
⌊
7+0

2
⌋

𝑘′=0+1
=

AND (0) ∨ (𝑂𝑅(1) ∧ 𝑂𝑅(6)) ∨ (𝑂𝑅(2) ∧ 𝑂𝑅(5)) ∨
 (𝑂𝑅(3) ∧ 𝑂𝑅(4))

𝑆𝑈𝑀2 = 𝐴𝑁𝐷 (
2

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(2 − 𝑘)))

2

2
−1

𝑘=0 ∨

(⋁ (𝑂𝑅(𝑘′) ∧ 𝑂𝑅(7 + 2 − 𝑘′))
⌊
7+2

2
⌋

𝑘′=2+1
) =

AND (1) ∨ (𝑂𝑅(0) ∧ 𝑂𝑅(2)) ∨ (𝑂𝑅(3) ∧ 𝑂𝑅(6)) ∨
 (𝑂𝑅(4) ∧ 𝑂𝑅(5))

𝑆𝑈𝑀4 = 𝐴𝑁𝐷 (
4

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(4 − 𝑘))

4

2
−1

𝑘=0) ∨

(⋁ (𝑂𝑅(𝑘′) ∧ 𝑂𝑅(7 + 4 − 𝑘′)))
⌊
7+4

2
⌋

𝑘′=4+1
 =

AND (2) ∨ (𝑂𝑅(0) ∧ 𝑂𝑅(4)) ∨ (𝑂𝑅(1) ∧ 𝑂𝑅(3)) ∨
 (𝑂𝑅(5) ∧ 𝑂𝑅(6))

𝑆𝑈𝑀6 = 𝐴𝑁𝐷 (
6

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(6 − 𝑘))

6

2
−1

𝑘=0)=

Fig. 6. The proposed OHR modulo adder for general m

TABLE IV
NUMBER OF COMBINATIONS COVERED BY (33)

Part of (33) Number of combinations

AND(
𝑚+𝑖

2
) 1

 ((⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 − 𝑘))
⌊
𝑖

2
⌋

𝑘=0

(⌊
𝑖

2
⌋ + 1) *2

(⋁
(
𝑚+𝑖

2
)−1

𝑘′=𝑖+1⏟
𝑖≤𝑚−2

(𝑂𝑅(𝑘′) ∧ 𝑂𝑅(𝑚 + 𝑖 − 𝑘′)) ((
𝑚+𝑖

2
) − 1 -i)*2

 (m is odd and i is odd)

TABLE III

NUMBER OF COMBINATIONS COVERED BY (32)

Part of (32) Number of combinations

AND(
𝑖

2
) 1

 (⋁
𝑖

2
−1

𝑘=0⏟
𝑖

2
−1≥0

𝑂𝑅(𝑘) ∧ 𝑂𝑅(𝑖 − 𝑘)
𝑖

2
 *2 =i

(⋁
⌊
𝑚+𝑖

2
⌋

𝑘′=𝑖+1⏟
𝑖≤𝑚−2

𝑂𝑅(𝑘′) ∧ 𝑂𝑅(𝑚 + 𝑖 − 𝑘′) (⌊
𝑚+𝑖

2
⌋ -i)*2

(m is odd and i is even)

AND (3) ∨ (𝑂𝑅(0) ∧ 𝑂𝑅(6)) ∨ (𝑂𝑅(1) ∧ 𝑂𝑅(5)) ∨
 (𝑂𝑅(2) ∧ 𝑂𝑅(4))

The odd bits of SUM are obtained from (33):

𝑆𝑈𝑀1 = 𝐴𝑁𝐷 (
7+1

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(1 − 𝑘)))

⌊
1

2
⌋

𝑘=0 ∨

(⋁ (𝑂𝑅(𝑘′) ∧ 𝑂𝑅(7 + 1 − 𝑘′)))
(
7+1

2
)−1

𝑘′=1+1
=AND(4) ∨ (𝑂𝑅(0) ∧

𝑂𝑅(1)) ∨ (𝑂𝑅(2) ∧ 𝑂𝑅(6)) ∨ (𝑂𝑅(3) ∧ 𝑂𝑅(5))

𝑆𝑈𝑀3 = 𝐴𝑁𝐷 (
7+3

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(3 − 𝑘)))

⌊
3

2
⌋

𝑘=0 ∨

(⋁ (𝑂𝑅(𝑘′) ∧ 𝑂𝑅(7 + 3 − 𝑘′)))
(
7+3

2
)−1

𝑘′=3+1
=AND(5) ∨ (𝑂𝑅(0) ∧

𝑂𝑅(3)) ∨ (𝑂𝑅(1) ∧ 𝑂𝑅(2)) ∨ (𝑂𝑅(4) ∧ 𝑂𝑅(6))

𝑆𝑈𝑀5 = 𝐴𝑁𝐷 (
7+5

2
) ∨ (⋁ (𝑂𝑅(𝑘) ∧ 𝑂𝑅(5 − 𝑘))

⌊
5

2
⌋

𝑘=0)=

AND(5) ∨ (𝑂𝑅(0) ∧ 𝑂𝑅(3)) ∨ (𝑂𝑅(1) ∧ 𝑂𝑅(2)) ∨
 (𝑂𝑅(4) ∧ 𝑂𝑅(6))

The proposed modulo adder for m=7 is shown in Fig. 7. This

adder has a simpler structure and less delay than [19]. The other

feature of this design is that both operands are represented in

OHC, while in [19] one of the operands has to be encoded in

binary.

IV. PERFORMANCE EVALUATION

In this section, the proposed modular adders are evaluated

and compared with previous state-of-the-art TCR and OHR-

based adders, [18] and [19]. With that purpose, both technology

agnostic analyses, based on the unit-gate model [22], as well as

the transistor count, and experimental evaluation, based on

application-specific integrated circuits (ASICs), are performed.

Note that the only work that has reported TCR-based modular

adders is [18], and the latest design of OHR-based modular

adders is reported in [19].

A. Technology Agnostic Assessment

The proposed TCR-based adder in Fig. 5 consists of the

𝑆𝑈𝑀0 and 𝑆𝑈𝑀1 producing gates, an AND gate, and a (m-2)-

bit 2×1 Multiplexer. Therefore, its area can be formulated as

follows:

𝐴𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟 = 𝐴𝑆𝑈𝑀0 & 𝑆𝑈𝑀1 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 + 𝐴𝐴𝑁𝐷 + (𝑚 −

2) 𝐴𝑀𝑈𝑋 2×1 (39)

where Ak denotes the area of the component k, and:

𝐴𝑆𝑈𝑀0 & 𝑆𝑈𝑀1 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = 2(𝑚 − 1)𝐴𝐴𝑁𝐷/𝑁𝑂𝑅 + (1 + 2 +⋯+

(𝑚 − 1))𝐴𝐴𝑁𝐷/𝑂𝑅/𝑁𝐴𝑁𝐷 + (𝐴𝑁𝑂𝑅 + 𝐴𝑁𝑂𝑅3 + 𝐴𝑁𝑂𝑅4 +⋯+

 𝐴𝑁𝑂𝑅𝑚−2) + 2𝐴𝑁𝑂𝑅𝑚−1 + (𝑚 − 2)𝐴𝑁𝑂𝑇 (40)

It should be mentioned that 𝐴𝑁𝑂𝑅𝑖 in (40) indicates the area

of a NOR gate with i inputs for i≥3 , and the ‘/’ symbol means

‘or’. Moreover, the delay of the critical path of the TCR adder

herein proposed can be estimated as:

𝐷𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟 = 𝐷𝑆𝑈𝑀1 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 + 𝐷𝑀𝑈𝑋 2×1 (41)

where Dk denotes delay of the component k, and:

𝐷𝑆𝑈𝑀1 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = (𝑚 − 2)𝐷𝐴𝑁𝐷 + 𝐷𝑂𝑅 + 𝐷𝑁𝐴𝑁𝐷 + 𝐷𝑛𝑜𝑡 (42)

The area of the TCR adder of [18] is estimated as follows:

𝐴 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟[18] = 𝐴𝑆ℎ𝑖𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + (𝑚 + (𝑚 + 2) + (𝑚 +

2 + 22) +⋯+ (2𝑚 − 2))𝐴𝑀𝑈𝑋 2×1 + (𝑚 − 1) 𝐴𝑀𝑈𝑋 2×1 (43)

where:

𝐴𝑆ℎ𝑖𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = (𝑚 − 2)𝐴𝑋𝑂𝑅 (44)

(45) is used for computing the delay of the TCR-based adder of

[18].

𝐷 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟[18] = 𝐷𝑆ℎ𝑖𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + (⌈𝐿𝑜𝑔
𝑚⌉ + 1)𝐷𝑀𝑈𝑋 2×1 (45)

where:

𝐷𝑆ℎ𝑖𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = ⌈𝐿𝑜𝑔
𝑚−1⌉𝐷𝑋𝑂𝑅 (46)

Fig. 7. The proposed OHR modulo adder for m=7

According to the Unit-Gate model, the basic 2-input gates

(AND, OR, NAND, and NOR) count as one unit for the delay

and the area, with the exception of the XOR/XNOR gates which

count as two units [22]. In that model, more complex cells are

built from the basic two-input gates. Moreover, one bit 2×1

multiplexer counts as three and two gates for the area and the

delay, respectively [23]. By applying the Unit-Gate model, (39)

to (46) can be rewritten as (47) to (50) (note that each i-input

basic gate can be realized using i-1 2-inputs gates).

𝐴𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 7𝑚 − 11 +
𝑚(𝑚−1)+(𝑚−3)(𝑚−2)

2
 (47)

𝐷𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 𝑚 + 2 (48)

𝐴 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟[18]_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 2(𝑚 − 2) + 3(𝑚 + (𝑚 + 2) + (𝑚 + 2 +

22) + ⋯+ (2𝑚 − 2)) + 3(𝑚 − 1) (49)

𝐷 𝑇𝐶𝑅 𝐴𝑑𝑑𝑒𝑟[18]_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 2(⌈𝐿𝑜𝑔
𝑚−1⌉ + ⌈𝐿𝑜𝑔𝑚⌉ + 1) (50)

Table V compares the TCR-based adder herein proposed with

[18] based on the Unit-Gate model, for moduli 5, 7, 8, 9 and 11.

With our proposal, the delay and area values have been

improved on average by 33% and 39.5%, respectively.

TABLE V
Area and Delay, Estimated with Unit-Gate Model, for the Proposed

Thermometer-based Modular Adder and [18]

modulo
(m)

Proposed TRC-based
adder modulo m

TRC-based adder
modulo m in [18]

Area Delay Area Delay

5 37 7 78 12

7 69 9 112 14

8 88 10 129 14

9 109 11 191 16

11 157 13 231 18

The area of the OHR-based adder herein proposed can be

estimated as follows:

𝐴𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟 = 𝐴𝐹𝑖𝑟𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 + 𝐴𝑠𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙 + 𝐴𝑙𝑎𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 (51)

where:

𝐴𝐹𝑖𝑟𝑠𝑡 𝐿𝑒𝑣𝑒𝑙= 𝑚𝐴𝐴𝑁𝐷 +𝑚𝐴𝑂𝑅 (52)

𝐴𝑠𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙=
𝑚(𝑚−1)

2
𝐴𝐴𝑁𝐷 (53)

𝐴𝑙𝑎𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 (𝑚𝑢𝑙𝑡𝑖 𝑖𝑛𝑝𝑢𝑡 𝑂𝑅′𝑠)=
𝑚(𝑚−1)

2
𝐴𝑂𝑅 (54)

It should be mentioned that there are m(m-1)/2 two-input

AND gates in the second level of the proposed OHR-based

adder. Furthermore, the last level includes m OR gates with

((m+1)/2)-inputs for odd values of m. Each i-inputs OR gate can

be implemented with (i-1) two-input OR gates. Therefore, a

total of m(m-1)/2 two-input OR gates are required for the last

level of the OHR-based adder for odd values of m. In the case

of an even m, according to Fig. 6, half of the last level of OR

gates has m/2 inputs, and the other has (m/2)+1 inputs.

Therefore, again a total of m(m-1)/2 two-input OR gates are

required for the case of even values of m. Moreover, the delay

of the critical path of the proposed OHR-based adders includes:
𝐷𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟 = 𝐷𝐹𝑖𝑟𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 +𝐷𝑠𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙 +𝐷𝑙𝑎𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 (55)

where:
𝐷𝐹𝑖𝑟𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 = 𝑀𝐴𝑋{𝐷𝑂𝑅, 𝐷𝐴𝑁𝐷} (56)

𝐷𝑠𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙 = 𝐷𝐴𝑁𝐷 (57)

𝐷𝑙𝑎𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 = ⌈𝐿𝑜𝑔
𝑚+1

2 ⌉𝐷𝑂𝑅 (58)

By applying the Unit-Gate model to (51) to (58), the

following formulas are obtained:

𝐴𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 2𝑚⏟
𝐴𝐹𝑖𝑟𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 (𝐴𝑁𝐷/𝑂𝑅′𝑠)

+

𝑚(𝑚−1)

2⏟
𝐴𝑆𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙 (𝐴𝑁𝐷′𝑠)

+
𝑚(𝑚−1)

2⏟
𝐴𝐿𝑎𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 (𝑚𝑢𝑙𝑡𝑖 𝑖𝑛𝑝𝑢𝑡 𝑂𝑅′𝑠)

= 𝑚2 +𝑚 (59)

𝐷𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 2⏟
𝐷𝐹𝑖𝑟𝑠𝑡 & 𝑆𝑒𝑐𝑜𝑛𝑑 𝐿𝑒𝑣𝑒𝑙

+ ⌈𝐿𝑜𝑔
𝑚+1

2 ⌉⏟
𝐷𝐿𝑎𝑠𝑡 𝐿𝑒𝑣𝑒𝑙 (𝑚𝑢𝑙𝑡𝑖−𝑖𝑛𝑝𝑢𝑡 𝑂𝑅)

 (60)

while for [19]:

𝐴 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟[19]_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 3 ∗ 𝑚⌈𝐿𝑜𝑔
𝑚⌉ (61)

𝐷 𝑂𝐻𝑅 𝐴𝑑𝑑𝑒𝑟[19]_𝑢𝑛𝑖𝑡 𝑔𝑎𝑡𝑒 = 2 ∗ ⌈𝐿𝑜𝑔
𝑚⌉ (62)

Table VI shows the estimate of the area and the delay of the

proposed OHR-based adder as well as of [19]. According to the

Unit-Gate model, the proposed OHR-based adders results in an

average improvement of 31.7% and 12.2% in delay and area,

respectively.
TABLE VI

Area and Delay, Estimated with Unit-Gate Model, for the Proposed One-

Hot Modular Adder and [19]

Modulo

(m)

Proposed One-Hot

modulo adder

One-Hot modulo adder

of [19]

Area Delay Area Delay

5 30 4 45 6

7 56 4 63 6

8 72 5 72 6

9 90 5 108 8

11 132 5 132 8

Similarly to [19], a comparison is performed based on the

number of transistors required for implementing the logic gates

as shown in Table VII. We consider complementary metaloxide

semiconductor (CMOS) designs for all the required gates.

Therefore, basic two-input digital gates can be implemented

with four transistors. In addition, a two-input XOR gate requires

12 transistors [24]. A multiplexer also requires 8 transistors by

using inverting multiplexers [24] (an extra not gate is required

when the number of consecutive multiplexers is odd). For [18]

(Fig. 1), multiplexers for which one of the inputs is 0, are

implemented by a single AND gate, and multiplexers for which

one of the inputs is 1 are implemented by one AND and one OR

gate. Note that a multiplexer or an XOR gate can also be

implemented with transmission gates (TGs) with a reduced

number of transistors. However, TGs have the problem of

voltage drop and high internal capacitances, due to the direct

exposure of the junction capacitors to the signals which are

passing TGs [25], and therefore they are not considered here. In

the first level of the proposed OHR-based adder (Fig. 7),

NAND and NOR gates can be used instead of AND and OR

gates. With this technique, each bit of the SUM can be

calculated by a compound gate [24] with 2m transistors for a

modulo m. Fig. 8 shows the structure of this compound gate for

m=7. It can be seen from Table VII that the proposed TCR and

OHR modular adders require less transistors than [18] and [19],

respectively.

Fig. 8. The structure of a compound CMOS gate for calculating SUM(0)

when m=7 (by using NAND and NOR gates instead of AND and OR gates in

the first level of Fig. 8).

TABLE VII

Transistor Count Comparison

modulo

(m)

TCR-based adders

modulo m

OHR-based adders

modulo m

Proposed [18] Proposed [19]

5 140 216 90 136

7 250 312 154 188

8 314 360 192 214

9 384 546 234 296

11 542 662 330 360

B. Experimental Evaluation

 All the proposed modular adders together with [18] and [19]

were described in VHDL, and verified using ModelSim.

Circuits for all these adders were implemented using the 65-nm

TSMC CMOS logic salicide process (1-poly, 9-metal). Cadence

RTL Compiler tools version v11.20-s012_1 were used for

synthesizing the designs and the Cadence Encounter and

NanoRoute tools (versions v09.12-s159 and v09.12-s013,

respectively) for placing and routing. Power consumption was

obtained from the placed-and-routed circuit specifications, for

20% of switching activity. The Cadence Encounter power

reporting tool was used to measure the total power, including

the dynamic and leakage components of the power.

Experimental results are presented in Tables VIII and IX for the

same moduli considered in [19]. Also, the percentage of energy

savings of the proposed adders, when compared to the previous

designs, are shown in Fig. 9.

Table VIII presents the experimental results for the TCR-

based modular adders. Experimental results show that the

speed, area, and energy for moduli 5, 7, 8, 9 and 11 are

improved on average by 38%, 27.5% and 29.5% respectively.

It should be noted that due to the way of representing numbers

in One-Hot and thermometer coding, the number of transistors

switching in the computational circuits is significantly less than

for the regularly binary coded operands. For example, for the

proposed OHR-based modular adder, whenever the inputs are

changed at most the output of four gates may change from zero

to one (including two OR gates in the top, one AND gate in the

middle and one of the 4-input OR gates in the bottom of Fig.6),

and at most the output of four gates may change from one to

zero (including two OR gates in the top, one AND gate in the

middle and one of the 4-input OR gates in the bottom). The

output of the other gates remains zero without any switching

activity. For the binary computations, it is possible to have all

the output bits changing by changing the values at the input.

Therefore, the power consumption of the suggested design in

Fig.6 is much less than the hardware structures supported on

binary inputs. Since in both [18] and [19] the effectiveness of

TCR and OHR based designs are proved, in comparison with

regular binary designs, and since the proposed designs have

better performance than [18] and [19], it can be concluded that

they have also better performance than regular modular binary

adders; with the exception of moduli with the shape 2n, since

this type of modulo does not require any additional modular

circuitry, and can be implemented with regular binary adders

[20].

Table IX shows the experimental results for the proposed

OHR-based modular adders. It can be seen that the delay and

area of the suggested OHR-based adders are improved in

comparison with [19]. The delay of the proposed adder for the

moduli 5, 7, 8, 9 and 11 is improved in average 34.5%, while

the improvement of energy (power-delay-product) is 6.3%.

It should be noted that one of the operands of the design in

[19] is represented in binary. The same assumption is herein

also made to simulate [19]. However, if the circuits required to

convert One-Hot encodings to their equivalent binary

representations are considered, the required power and energy

for those adders grow.

Fig. 9 represents the percentage of the improvement of the

power-delay product (i.e. energy), and area-delay-product

(ADP) of the proposed TCR and OHR-based modular adders,

TABLE VIII

EXPERIMENTAL RESULTS FOR THE PROPOSED THERMOMETER BASED MODULAR ADDER AND [18]

modulo (m)

Proposed thermometer based modulo adder Thermometer based modulo adder [18]

Delay

(ns)

Power

(mW)

Allocated area

(u𝑚2)
Energy

(pJ)

Delay

(ns)

Power

(mW)

Allocated area

(u𝑚2)
Energy

(pJ)

5 0.292 0.755 488 0.2205 0.583 0.525 743 0.3061

7 0.35 0.974 820 0.3409 0.573 0.7671 1111 0.4395

8 0.432 0.8588 1069 0.371 0.672 0.7645 1354 0.5137

9 0.422 1.127 1289 0.4756 0.645 1.064 1884 0.686

11 0.498 1.152 1823 0.5737 0.724 1.292 2411 0.9354

in comparison with the designs in [18] and [19]. It can be

observed that the proposed TC based modular adder results in

28%, 22.4%, 27.8%, 30.7% and 38.7% energy improvement for

moduli 5, 7, 8, 9 and 11, respectively. Moreover, the ADP has

been improved 67.1%, 54.9%, 49.2%, 55.2% and 48% for the

same moduli. Similarly, according to Fig. 9, the suggested

OHR-based modular adders result in 3.79%, 2.14%, 8.72%,

10.45% and 6.39% energy reduction for moduli 5, 7, 8, 9 and

11, respectively. Finally, the ADP improvement percentages

are 47.2%, 37.44%, 39.13%, 52.62% and 44.57%.

Although the power-consumption of the proposed adders

(except for TCR adders and m=11 in Tables VIII and IX) is

higher than [18] and [19], due to more interconnections and the

usage of multi-input gates, the delay is significantly reduced, by

avoiding the multiplexer-approach and making simplifications

at the logic level. In the end, the significant reduction of the

delay allows us to improve the energy efficiency for all cases in

comparison to [18] and [19]. Fig. 10 compares the performance

of the proposed adders. Although the representation of numbers

with the OHC requires one more bit than with the TC, the delay

and the occupied area of the proposed OHR adder design are

better than those of the proposed TCR adder design, while the

energy consumption is very close for the two approaches. As

indicated in [19], the One-Hot based modular adders require

less area and impose lower delays than the corresponding

binary modular adders. Therefore, since our One-Hot modulo

adder has better performance than [19], it can be concluded that

the suggested One-Hot modulo adder has better performance

than the corresponding binary adders for the moduli 5, 7, 8, 9

and 11.

Furthermore, One-Hot coding reduces the circuit activity

factor due to the use of just one active signal for each input

value. Therefore, one-hot coding circuits have better energy-

efficiency than the corresponding binary adders, being

extremely useful for moduli with small values [19].

V. CONCLUSION

In this paper, two new classes of efficient modular adders

TABLE IX

EXPERIMENTAL RESULTS FOR THE PROPOSED ONE-HOT CODING MODULO ADDER AND [19]

modulo (m)

Proposed OHR Adder OHR Adder [19]

Delay
(ns)

Power
(mW)

Allocated

area (u𝑚2)
Energy

(pJ)
Delay (ns)

Power
(mW)

Allocated
area

(u𝑚2)

Energy
(pJ)

5 0.203 1.475 501 0.2994 0.301 1.034 640 0.3112

7 0.215 1.734 761 0.3728 0.311 1.225 841 0.3810

8 0.216 1.886 880 0.4074 0.319 1.399 979 0.4463

9 0.227 2.088 1037 0.474 0.377 1.404 1318 0.5293

11 0.244 2.346 1414 0.5724 0.389 1.572 1600 0.6115

Fig. 9. Comparison of the performance of the proposed thermometer and

one-hot coding-based adders.

Fig. 10. Comparing the performance of the proposed thermometer and one-

hot coding-based adders.

are proposed, for Thermometer Coding (TC) and One-Hot

Coding (OHC). The main advantages of the proposed adders

are their high performance and low-cost, making them useful

for example for Residue Number Systems (RNSs) based on

small moduli sets, used for digital signal processing embedded

systems and IoT. For the first time, the conventional

multiplexer-based design of OHC and TC adders are replaced

by a novel approach based on a small number of logical gates.

Since TC and OHC modular adders do not require carry

propagation, their structures for small moduli become simpler,

more efficient and have lower delay than binary modular adders

(except for moduli with the shape of 2𝑛). Performance analyses

and experimental results have shown the significant impact of

these improvements. Moreover, the formulation and

architectures introduced in this work are easily extended to

design other units for modular arithmetic, such as subtractors.

REFERENCES

[1] A.S. Molahosseini, L. Sousa and C.H. Chang (Eds.), Embedded Systems
Design with Special Arithmetic and Number Systems, Springer, 2017.

[2] Y. H. Chen, T. Krishna, J. S. Emer and V. Sze, “Eyeriss: An Energy-

Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-

138, 2017.

[3] M. Alioto (Ed.), Enabling the Internet of Things: from Integrated Circuits
to Integrated Systems, Springer, 2017.

[4] P.V.A. Mohan, Residue Number Systems: Theory and Applications,

Springer, 2016.
[5] C.H. Chang, A.S. Molahosseini, A.A. Emrani Zarandi, and T.F. Tay,

“Residue Number Systems: A New Paradigm to Datapath Optimization

for Low-Power and High-Performance Digital Signal Processing
Applications,” IEEE Circuits and Systems Magazine, vol. 15, no. 4, pp.

26-44, 2015.

[6] L. Sousa, S. Antão, and P. Martins, “Combining Residue Arithmetic to
Design Efficient Cryptographic Circuits and Systems,” IEEE Circuits and

Systems Magazine, vol. 16, no. 4, pp. 6-32, 2016.

[7] M. Labafniya and M. Eshghi, “An efficient adder/subtracter circuit for
one-hot residue number system,” Intl. Conf. on Electronic Devices,

Systems and Applications (ICEDSA), pp.121-124, 2010.

[8] M. Hosseinzadeh, S. JafaraliJassbi, K. Navi, “A novel multiple valued
logic OHRNS adder circuit for modulo (rn-1),” The 4th international

conference on advanced engineering computing and applications in

sciences, pp.166-170, 2010.
[9] D. Kheirandish, A. Safari, Y. Kong, “Using one hot residue number

system (OHRNS) for digital image processing,” The 16th CSI

International Symposium on Artificial Intelligence and Signal Processing,
pp. 064-067, 2012.

[10] W. A. Chren, “One-hot residue coding for low delay-power product

CMOS design,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 45, no. 3, pp. 303-313, 1998.

[11] H. V. Jayashree, J. Vuggirala and G. N Patil, “ Design of High Speed

Area Efficient OHRNS Data Path Subsystems for FFT
Implementation,” 4th International Conference on Electronics and

Communication Systems (ICECS), 2017.

[12] S. Kak, "Generalized unary coding", Circuits Systems and Signal
Processing, vol. 35, no. 4, pp. 1419-1426, 2016.

[13] S.W. Golomb, Run-length encodings. IEEE Trans. Inf. Theory IT–12,

399–401,1966.
[14] R. F. Rice, R. Plaunt, “Adaptive variable-length coding for efficient

compression of spacecraft television data,”IEEE Trans. Commun., vol.16,

pp. 889–897, 1971.
[15] S. Jayashri and P. Saranya,” Reconfigurable FIR Filter Using Distributed

Arithmetic Residue Number System Algorithm Based on Thermometer

Coding”, International Conference on Communication and Signal
Processing, 2014.

[16] C. H. Vun, A. B. Premkumar, and W. Zhang, “Sum of Products:
Computation using Modular Thermometer Codes”, International

Symposium on Intelligent Signal Processing and Communication
Systems (ISPACS), Dec. 2014.

[17] C. H. Vun and A. Premkumar, “RNS encoding based folding ADC,” in

Proc. IEEE International Symposium on Circuits and Systems, pp. 814–
817, 2012.

[18] C. H. Vun and A. Premkumar, “Thermometer code based modular

arithmetic,” in Proc. Spring Congress on Engineering and Technology (S-
CET), pp. 534–538, 2012.

[19] C. H. Vun, A. Premkumar, and W. Zhang, “A new RNS based da

approach for inner product computation,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 60, no. 8, pp. 2139–2152, 2013.

[20] K. Navi, A.S. Molahosseini and M. Esmaeildoust, "How to Teach Residue

Number System to Computer Scientists and Engineers," IEEE
Transactions on Education, vol. 54, no. 1, pp. 156-163, 2011.

[21] S. A. White, "Applications of distributed arithmetic to digital signal

processing: a tutorial review," IEEE ASSP Magazine, vol. 6, no. 3, pp. 4-
19, 1989.

[22] R. Zimmermann, “Binary adder architectures for cell-based VLSI and

their synthesis,” Ph.D. dissertation, Dept. Inf. Technol. Elect. Eng., ETH
Zürich, Zürich, Switzerland, 1997.

[23] A. S. Molahosseini, K. Navi, O. Hashemipour, and A. Jalali, “An efficient

architecture for designing reverse converters based on a general three-
moduli set,” J. Syst. Archit., vol. 54, no. 10, pp. 929–934, 2008.

[24] N.H.E. Weste and D.M. Harris, CMOS VLSI Design: A Circuits and

Systems Perspective, fourth edition, Addison-Wesley, 2011.
[25] X. Chen and N.A. Touba, Fundamentals of CMOS design, Chapter 2 in

Electronic Design Automation, L.T. Wang, Y.W. Chang and K.T. Cheng
(Eds.), Morgan Kaufmann, 2009.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8061186
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8061186
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6937465
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6937465
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7006982
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7006982
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7006982

